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1 INTRODUCTION            
ooperative communication is a far dated concept 
originating from the work on relay channel [1]. By 

endeavor of [2] [3], cooperative communication came back 
to the limelight about 20 years later. Higher through put & 
reliability could be obtained in wireless cooperative 
network as neighboring node serve as intermediate relays 
after overhearing the signal transmitted from a source, 
which in turn aid in forwarding the message to the 
destination, in order to create spatial diversity. 

Studies on resource control, especially power allocation for 
cooperative networks have been conducted under various 
levels of channel knowledge [4]. The present work scenario 
concentrates on single-user relay networks. In this system, 
only a signal transmission link is active at a time-point 
which is most probably aided by one or more relays. But in 
the case of multi-user relay network having multiple 
simultaneous transmissions, interference between the 
transmission links. This is mainly due to the fact that 
increase of one link’s performance has to be compensated 
by the degradation of another link’s performance. Hence, 
the focal point of the work is to know how to balance the 
tradeoff between different links in order to achieve 
satisfactory network-wise utility. 

 Game theory has emerged as a very powerful tool because 
it provides a convenient framework to study interactions 
among self-interested individuals. Game-theoretic 
approaches relax the objective function to achieve global 

optimality by adopting competitive optimality as the 
optimization criterion, which typically provides feasible 
alternatives for distributed implementation. 

 

 

 

 

 

 

 

 

Current game theory works on power control have evolved 
from scalar games, where each user only has one degree of 
freedom (typically the transmit power) for optimization, to 
more complicated vector games, where each user only has 
one degree of freedom (typically the transmit power) for 
optimization, to more complicated vector games, where 
each user has several degrees of freedom such as user codes 
or power allocation across a set of sub-channels. A typical 
problem setting for the scalar game is the CDMA uplink 
power control, which has been thoroughly investigated by 
a plethora of works [7], [8], etc. Scalar power control has 
also been studied from the jamming perspective and 
modeled as a dynamic jamming game in [9]. A typical 
problem setting for the vector game is the Gaussian 
frequency-selective Interference channel, which has been 
studied in [10], [11]. A vector power control problem in flat-
fading Gaussian interference channels. Since these vector 
games may admit multiple Nash equilibria (NEs), 
tremendous efforts have been devoted to characterize 
sufficient conditions for the uniqueness of the NE, with the 
broadest one reported in [12], which are also the sufficient 
conditions that guarantee global convergence 

In this paper, we address the power control problem in the 
multi-cell multi-hop cellular systems using a game-
theoretic approach. We adopt the same model as [16] and 
maximize the throughput of a two-cell system, by optimally 
controlling the power for both the sources and the relays. 
The main contributions of this paper are twofold. We 
propose a new type of power control game, which we call 
the Gaussian interference relay game (GIRG), within the 
interference relay channel setting. We show that the GIRG 
always possesses a unique NE, irrespective of the channel 
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the competitive nature of the multi-user environment, we model the problem as a strategic non-cooperative game and show that this game always 
has a unique Nash Equilibrium (NE), for any system profile. Two iterative algorithms, based on simultaneous and asynchronous algorithm.  We also 
prove that the proposed algorithm always converges to the unique NE from an arbitrary starting point. We consider here Gaussian interference relay 
games (GIRGs), where instead of allocating the power budget across a set of sub-channels, each player aims to decide the optimal power control 
strategy across a set of hops. We show that the GIRG always possesses a unique NE for a two-player version of the game, irrespective of any 
channel realization or initial system parameters such as power budgets and noise power. We then conclude that the distributed game-theoretic 
approach exhibits great potential in the context of interference relay. More importantly, the global optimality in terms of the sum information rate is 
achieved by the NE, when the interference is relatively low. 

Index Terms— Nash Equilibrium (NE), Power control problem, Gaussian interference relay games (GIRGs), Power Control, Game 

——————————      —————————— 
 

 

 

 

 

 IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               1962 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

 

realization and the initial system parameters such as power 
budgets and noise power. To benchmark the performance 
of NE, we investigate the sum-rate optimization problem, 
which is non-convex and non-smooth in nature.  

The rest of this paper is organized as follows. In Section 2, 
the system model is described and the power allocation 
problem is formulated as a game. We then prove the 
existence and uniqueness of the NE in Section 3. In Section 
4, two distributed algorithms are proposed to achieve the 
unique NE and their convergence properties are proved 
therein. Numerical examples are presented in Section 5. 
Finally, we conclude this work in Section 6. 
 
2. SYSTEM MODEL AND PROBLEM FORMULATION:   
 

 
 
2.1  SYSTEM MODEL 
 

We address the problem of power allocation for 
interference relay channels, as depicted in Fig.1, which 
consists of two single-relay-assisted communication links. 
That is, link1 and link2 S1→R1→D1 and S2→R2 →D2 share 
the same physical resources, such as time and bandwidth. 
Each source Si tries to communicate, via a repetition-based 
decode-and-forward (DF) protocol, with its corresponding 
base station Di, assisted by a dedicated half-duplex relay 
Ri. In principle, S1 (R1) causes interference to S2 (R2), and 
vice versa. 
At the first time slot, the signal received at R1 is 
 

 
 

Where x1 and x2 are the symbols transmitted by S1 and S2, 

Respectively, and   E|x1|2 = E|x2|2 = 1. At the second time 
slot, each relay forwards the successfully decoded   symbol to 
its destination, so that the received signal at D1 is  
 

 
 

The channel coefficients between Si and Rj, and the 
coefficients between Ri and Dj, are denoted as hij and gij, i, j ∈ 

{1, 2}, respectively, ni1 is the additive white Gaussian noise 
(AWGN) at Ri with variance σ2

i1, and ni2 at Di with variance 
σ2

i2. Pi1 and pi2 denote the transmit power at Si and Ri, 
respectively. The received signals at R2 and D2 have the 
symmetrical structure as (1) and (2). 
 

The channel is assumed to change sufficiently slowly so that 
the information theoretical results are meaningful. Besides, we 
assume that there is a total power constraint on each 
communication pair (Si → Ri → Di), which corresponds to the 
maximum power that a given packet is allowed to consume 
throughout its propagation from source to destination. Based 
on the above assumptions, the maximum achievable rate of 
link1, given link2 as interference, and that of link 2, given link 
1 as interference, are  

 
 

 
 

Where ωi1 = σ2i1  /|hii|2 and ω i2 = σ2 i2 /|gii|2 denote the 
normalized background noise power at the relays and the 
destinations, respectively, for i ∈ Ω.  
α ij  = |hij|2 /|hjj|2 and βij  = |g ji|2/|gjj|2 denote the normalized 
interference coefficients at the relays and destinations, 
respectively, for i = j, i, j ∈ Ω. 
 
2.2  Problem Formulation 
 

The central design task is to determine a transmit power 
Control policy (pi1, pi2) for each communicating link to 
achieve a satisfactory network-wide utility. This seemingly 
simple problem is highly complicated due to the 
interference coupling between the two links, because 
generally, increasing the transmit-power level of one link 
has the undesirable effect of also increasing the levels of 
interference to the other link. The centralized approach 
corresponding to the following optimization problem  
 

 
 

Where Pi = [pi1, pi2]T denotes the strategy adopted by link i, 
∀i ∈ Ω. Si is the admissible strategy set of link i, defined as 
Si = {pi : 0 ≤ pi1 + pi2 ≤ P i }, ∀ i ∈ Ω, 
 i.e., a sum power constraint on each link. 
Problem (P1) is fundamentally a non-convex problem, 
Whose global optimal solution cannot be efficiently found, 
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even in a centralized fashion, needless to say the heavy 
signaling burden for centralized control. Nevertheless, the 
inherent competitive nature of (P1) motivates us to use the 
convenient framework of game theory. Specifically, we 
model the problem as a pure strategic non-cooperative 
game, in which the players are links and the payoff 
functions are their own rates. Each player competes against 
the other by choosing the power control strategy that 
maximizes its own rate, subject to a sum power constraint. 
Mathematically, the game can be expressed as 
 

 
 
Where p− i = [pj1, pj2]T,  i= j, i, j ∈ Ω. Note that the solution to 
(6) is the well-known NE. 
Based on the above game-theoretic formulation, we adopt 
competitive optimality as the optimization criterion. That 
is, the achievement of a NE, which is reached when each 
user, given the power control strategy of the other, does not 
get any rate increase by deviating from the power strategy 
corresponding to the equilibrium. Formally stated, we have 

Definition: A pure strategy profile p∗ = (p∗) i∈Ω ∈S is 
a NE of game G if  
 

 
 
 
3. EXISTENCE AND UNIQUENESS OF THE  
                     NASH EQUILIBRIUM 
 
In this section, we show that the NE of game G not only exists 
but is always unique. 
 

 
3.1 Existence of the Nash Equilibria 

 
The existence of NE for game G is guaranteed by the 
following fundamental theorem in game theory [15]: 
 

Theorem 1: A strategic non-cooperative game G = {Ω, {Si} 
i∈Ω, {Ii}i∈Ω } admits at least one NE if, ∀i ∈ Ω: 1): 
 
• The set Si is a nonempty compact convex subset of an 
Euclidean space; 
• The payoff function Ii (pi, p−i) is continuous on S and quasi 
concave on Si. 
 
Based on Theorem 1, we can conclude that game G of (6) 
always admits at least one NE, since the strategy space of each 
user is a convex and compact set, and the payoff function of 

each user is continuous in S and concave in pi ∈ Si, hence 
quasi-concave. 
      

3.2  Uniqueness of the Nash Equilibrium 
 
While the current literature on Gaussian interference 
games indicates that the uniqueness of NE is only 
guaranteed by sufficient conditions, we will show that 
the GIRG considered here always possesses a unique NE 
for any system profile. 
Let p = [p1T, p2T]T, and assume that p* is a NE of game G. 
according to the definition of NE, p1* is the maximizer of 
I1 (p1, p2*), and p2* the maximizer of I2 (p2, p1*), which 
are given by the well-known equal rate relation as 
follows: 

 

 
 

 
Plus the two sum power constraints 
 

 
Hence, we have four equations characterizing the 
NE p*. In other words, the set of NE corresponds to the 
solution set of Eqns. (8)-(11). By showing that there always 
exists only one feasible solution, we have the following 
theorem. 
 
Theorem 2: Game G always possesses a unique NE. 
Proof: See Appendix A. 
 
4. DISTRIBUTED ASYNCHRONOUS ALGORITHM AND 
CONVERGENCE 
 
So far, we have shown that game G always has a unique NE, 
irrespective of the channel conditions, network topologies, and 
power budgets. Since there is no reason to expect a system to 
be initially at equilibrium, the concept of equilibrium is 
meaningful in practice only if one is able to find a procedure 
that reaches such an equilibrium from non-equilibrium states. 
We propose a distributed asynchronous algorithm that 
performs this task and prove that it always converges to the 
NE. 
In this section, we first define an iterative mapping, based on 
which two decentralized asynchronous algorithms are proposed. 
Next, we study the convergence properties of both algorithms 
and show that they always converge to the unique NE. 
Synchronous algorithms share the common requirements of 
certain forms of synchronization and coordination between 

(8) 
 
(9) 
 

(10) 
(11) 
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different links, since both users need to update their strategies 
according to a given schedule (i.e., either sequentially or 
simultaneously). In a synchronous algorithm, each link 
proceeds to iteratively reset its rate-maximizing power 
strategy as if the other links were not going to change their 
strategies. Maintaining such an update schedule brings 
additional controlling overheads and weakens the applicability 
of distributed implementation. Therefore, we consider and 
propose a distributed and asynchronous algorithm. 
 

The optimal strategy of one link, given the strategy of the 
other link fixed, must satisfy (8)-(11), from which we can 
obtain         
                                            
                                                                                         (12) 
 
                                                                                         (13) 
 

                                                                                              (14) 
   
 
                                                                         

 
 
It should be noted that the above λ1, λ2, μ1 and μ2 are the 
aggregate interference-plus-noise terms and thus can be 
measured by each link locally. Next, define the vector-
valued mapping function 
 

                                                                                               
 
Then, the iterative updating simply corresponds to 
performing the following iterative mapping1 

 

                      (16) 
 

Where n is the iteration index. Accordingly, the NE is just 
the fixed point of the iterative mapping (16). That is 
                                                                                         (17) 

 

To achieve decentralized implementations, where no 
signaling among different users (links) is allowed, we 
propose two classes of iterative algorithms: asynchronous 
algorithms, where the users update their strategies 
asynchronously according to a given schedule; and 
synchronous algorithms, where all the users update their 
strategies at the same time. Both algorithms are distributed 
in nature, since one user acts independently of the other to 
optimize its own power allocation while perceiving the 
other as interference. In the following, we shall elaborate on 
both algorithms with a formal description. 

The asynchronously algorithm is actually an instance of the 
Gauss-Seidel scheme [16] where all the users update their 
own strategies asynchronously, performing the iterative 
mapping (17), according to Algorithm 1. The synchronous 
algorithm is an instance of the Jacobi scheme [16] where at 
each iteration, all users update their own power allocation 
synchronously, given the interference generated by the 
other users in the previous iteration, as described in 
Algorithm 2. For both algorithms, we have the following 
result: 
 
Theorem 3: Algorithm 1 and 2 always converge to the 
unique NE, from an arbitrary initial point. 
Proof: See Appendix B. 
 

 
Algorithm 1:  Asynchronous Power Control Algorithm  
Set Pi(0)  =  any feasible power control, ∀i ∈ Ω; 
For n =0: number of iterations 

 
End 

 
 

Algorithm 2:  Simultaneous Algorithm  
Set Pi(0)  =  any feasible power control, ∀i ∈ Ω; 
For n =0: number of iterations 

 
End 

 
 

1The iterative mapping (16) corresponds to a simultaneous updating rule. 
 
 
 5. NUMERICAL RESULTS 
 
In this section, we present some sample numerical 
results. 
We first illustrate the convergence properties of both 
algorithms through the following randomly generated 
channel realization, according to an exponential 
distribution with mean1: 
 
 

(18) 
 
 
Without loss of generality (w.l.o.g.), we set all the noise 
variances to 1, and the sum power budgets P1 = P2 =1. 

(15) 
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Fig.2: Convergence illustration of the sequential 
algorithm versus the asynchronous algorithm. 
 

In Fig. 2 and Fig. 3 show the evolutions of the iterative 
power control, for both synchronous and asynchronous 
algorithms, from two different sets of initial points:  
(0 .8, 0 .2) and (0 .1, 0 9). Here we only report the power 
control sequence of link 1 as an example. In regard to the 
asynchronous algorithm, we make the assumption that 
link 2 proceeds with the updates twice more often than 
link 1 
 

 
 

Fig.3: Convergence illustration of the simultaneous 
algorithm versus the asynchronous algorithm 
 

Then, it can be observed that all the algorithms converge 
towards the unique NE, irrespective of the initial points. 
Due to space limitation, the numerical result of the case 

of relatively low interference settings are not shown 
here, yet faster convergence, as expected, is observed. 
Next, we investigate the performance penalty by using 
the decentralized game-theoretical approach, instead of 
the Pareto-optimal centralized counterpart. Specifically, 
we compare the sum rate of two links (i.e., I1 + I2) 
achieved at the NE with the optimal sum rate, which can 
be obtained via either exhaustive search or DC 
(Difference of Convex functions) programming [17].  
For the sake of simplicity, we consider a linear topology, 
where the links S1 →R1 →D1 and S2 →R2 →D2 forms 
two parallel straight lines. Besides, we set equal, the 
distances of Si → Ri  and Ri → Di, i ∈ Ω, and vary the 
relative distance d between the two links, so that the 
“cross” channel gains are characterized by |h ij|2d−ζ   and 
|gij|2d−ζ, i = j, i, j ∈ Ω, respectively. 
 

 
 

Fig.4: Optimality probability/expected rate ratio of the 
NE versus the average INR, with ζ =3. 
 
Fig.4 illustrates the performance penalty of the NE in 
terms of the sum information rate, versus the average 
interference to noise ratio (INR). The squared line 
exhibits the optimality probability of the NE, while the 
circled line represents the expected rate ratio achieved 
by the NE over the optimal sum rate. Then, as we can 
see, both the optimality probability and the expected 
rate ratio increase, as the average INR decreases (i.e., the 
two links become increasingly far from each other). 
More importantly, as we observe, under very high 
interference scenarios, e.g., INR equals 10 dB, the 
optimality probability approaches 0, however on 
average, the NE still achieves 30% of the optimal sum 
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rate. When the interference is moderate (e.g., the INR 
equals 0dB), the NE is optimal with the probability 0.4, 
and achieves almost 85% of the optimal sum rate on 
average. Thus, we can conclude that the distributed 
game-theoretical approach exhibits great potential in the 
context of interference relay channels, and qualifies as a 
practically appealing candidate for resource allocations. 
 

                     6. CONCLUSION 
 
 

In this paper, we have addressed the problem of power 
control in the context of interference relay channels 
based on a game-theoretical framework. Due to the 
competitive nature of the multi-user environment, we 
have used the framework of game theory and modeled 
the problem as a strategic non-cooperative game. We 
have shown that the proposed game always possesses a 
unique NE for any system profile. To allow practical 
implementation, we have proposed a distributed and 
asynchronous algorithm which has been shown to have 
a global convergence property. Extensive simulations 
have also shown that the proposed distributed method 
approach through extensive numerical results. 
 

APPENDIX A: PROOF OF THEOREM 2 
 

We prove the uniqueness of NE by showing that there 
exists only one feasible solution to (6)-(9). After some 
manipulations,  can be obtained by solving the 
following quadratic equation: 
 

       (19)                                                            
 

Whose solution are given by 
 

    (20)                                                                  

      (21)                                                                    
Where 

 
 

Next, in order to show that  is always infeasible, we 
can simply show that  

          (22) 
Notice that A> 0 and B> 0. When D> 0, (20) is equivalent 

to as P1 AD > 0, which is always true. When D<0, (20) 
equals to P1 BD < 0, which is still always true. Finally 
when D equals 0,(17) reduces to a linear equation with 
the unique solution . The feasibility of  
can be shown using the same line of proof. Thus, we 
prove the uniqueness of the solution p11. The same trick 
can be used to prove the uniqueness of other solutions. 
Therefore, we come to the conclusion that game G 
always possesses a unique NE. 
 

APPENDIX B: PROOF OF THEOREM 3 
 

The proof consists of two steps. Firstly, we prove the 
convergence of the power allocation sequence, and then 
show that it actually converges to the unique NE. We 
start with the simultaneous algorithm and define the 
mapping 
 

    (23) 
 From (23) we observe that, the 

iteratively generated sequence, by taking  as an 
example, is actually a combination of two subsequences  
 

 
 

A fundamental result of sequence convergence states 
that, a sequence is convergent if and only if all of its 
subsequences converge towards the same limit. Since 
both subsequences of 

 are generated via the same mapping T1, we focus 
in the following only on  w.l.o.g.                                   
Denote k = 2m and by substituting (16) into (23), we have  

                (24) 
 

Define . After some involved 
manipulations δ(k)  can be simplified as  

              (25) 
Notice that the above denominator is always positive, 
thus the sign of δ(k) just corresponds to the sign of 

As can be seen from Fig. 5, when D> 0, h(x) is a 
convex function with two roots, 

 . When the initial 

point falls in , δ is positive, i.e. . Is a 
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monotonically increasing sequence. On the other hand, 
when the initial point lies in , δ is negative, i.e. 

 is a monotonically decreasing sequence. When the 

initial point equals  becomes a constant 

sequence. Thus, we show that the sequence  is 
always monotonic and bounded . 

Therefore, converges. For the cases D = 0 and D < 
0, the monotonicity can be shown in the same manner 
and the convergence follows naturally. Therefore, we 

have proved that always converges, from an 
arbitrary initial point. 

Next, we show that  converges to the NE. Suppose 

 

 

(26) 
Where (a) is justified by the continuity of the mapping 

function T1. Therefore, as long as  converges, it is 
guaranteed to converge to the fixed points of the 
mapping T1 (i.e., the NE). 

 
 

The same trick can be used to prove the convergence of 
the other subsequence of .Therefore,  
converges to the unique NE. Convergence of other 
power sequences can be similarly proved. This 
completes the convergence proof of the simultaneous 
algorithm. 
Finally, we note that the convergence also holds for the 
sequential algorithm. Because the power sequence is 
composed of two identical sequences, each of which can 
be proved to converge to the unique NE by the same 
approach. Hence, we have proved that both algorithms 
always converge to the unique NE of game G. 
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